Lower your thermostat by one degree

In partnership with Hubbub, we have compiled this methodology to substantiate the potential savings that the average household could achieve when adopting the following behaviours at home.

GB: Ready to turn down the heat? Lowering your thermostat by just one degree could lower your heating bill too, by an average of £107 a year. For most, a comfortable living room temperature is between 18°C - 21°C.

NI: Ready to turn down the heat? Lowering your thermostat by just one degree could lower your heating bill too, by an average of £138 a year.

For most, a comfortable living room temperature is between 18°C - 21°C.

IE: Ready to turn down the heat? Lowering your thermostat by just one degree could lower your heating bill too, by an average of €174 a year. For most, a comfortable living room temperature is between 18°C - 21°C.

Whether you live in a studio flat or Buckingham Palace, your energy use and bill is likely to differ! With so many variables and contributing factors to consider, there is no one-size fits-all when it comes to savings. We have worked with a combination of reliable sources, official statistics, averages and assumptions to give IKEA customers an idea of the potential savings from an 'average household.' Assumptions cover the size of house, tariff, and region, as well as habits and behaviours. We've positioned the savings as 'around' or 'an average', as the data is based on estimates and averages so should be used as a guide. Actual savings could be higher or lower.

Cost savings

For full methodology, see the report: UK gov report 'How much energy could be saved by making small changes'. This work was not intended to give precise or definitive calculations of energy savings. They have estimated the 'high', 'low', and 'most likely' potential of the energy saving per household from adopting narrowly defined behaviours, and we have used the middle 'most likely' number for our calculations.

Calculation (GB):

- Cost per kWh of gas = £0.0699 (from April 25, Ofgem)
- Saving per kWh/y = 1530 kWh (based on lowering thermostat from 19°C to 18°C)
- 1530 kWh x £0.0699 = £106.95

Calculation (NI):

- Cost per kWh of gas = £0.0899 (from March 25, <u>Utility Regulator</u>: dividing the example NI kWh consumption by cost (12,000kWh / £1,079 = £0.0899)
 Saving per kWh/y = 1530 kWh (based on lowering thermostat from 19°C to 18°C)
- 1530 kWh x £0.0899 = £137.55

Calculation (IE):

- Cost per kWh of gas = €0.1134 (from second half 2024, <u>Eurostat</u> including VAT)
- Saving per kWh/y = 1530 kWh (based on lowering thermostat from 19°C to 18°C)
- 1530 kWh x €0.1134 = €173.50

Assumptions	Source
A UK government report has calculated the	GOV.UK: 'How much energy
average potential saving of lowering your	could be saved by making
thermostat by 1 degree. The report uses	small changes'
modelling from the Cambridge Housing Model	
(CHM) that estimates domestic energy	
consumption and gives a 'most likely' value of	
1,530 kWh per household per year saved, or	
13% of space heating energy.	
The Energy Saving Trust recommends heating	Energy Saving Trust 2024: The
your home to between 18°C to 21°C during	most economical ways to use
winter.	your central heating
The World Health Organisation suggests 18°C	World Health Organisation:
is the ideal temperature for healthy and well-	https://iris.who.int/bitstream/h
dressed people. Both agree this is also the	andle/10665/275839/WHO-CED-
ideal temperature for sleeping.	PHE-18.03-eng.pdf
GB cost per kWh of gas = £0.0699	Ofgem: Energy Price Cap
NI cost per kWh of gas = £0.0899 (dividing the	NI: Utility Regulator concludes
example NI kWh consumption by cost	review of regulated gas tariffs
(12,000kWh / £1,079 = £0.0899)	
IE cost per kWh of gas = €0.1134	Eurostat: Natural gas prices
	for household consumers

CO₂/ CO₂e savings

All environmental are illustrative as of May 2025 from www.calculator.carbonfootprint.com

GB and **NI**

Lowering your thermostat by one degree could save an average 275kg CO₂e per year

*IE*Lowering your thermostat by one degree could save an average 312kg CO₂ per year

Calculation	Source	Environmental Saving
GB and NI: 1,530 kWh x 0.20kg CO ₂ e = 306kg CO ₂ e	0.202kg CO ₂ e is converted from emissions associated with natural gas (using net calorific value): Greenhouse gas reporting: conversion factors 2024	Flying from London to Madrid on an economy class ticket emits 308kg CO₂e (this is illustrative as of May 2025)
IE: 1,530 kWh x 0.204kg CO ₂ = 312.12kg CO ₂	0.204kg CO ₂ is converted from emissions associated with natural gas (using net calorific value): <u>SEAI Conversion</u> Factors Environmental	Flying from Dublin to Amsterdam 3 times on an economy class ticket emits 300kg CO ₂ e (this is illustrative)